Source code for bayesflow.benchmarks.gaussian_mixture

# Copyright (c) 2022 The BayesFlow Developers

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Corresponds to Task T.7 from the paper https://arxiv.org/pdf/2101.04653.pdf
# NOTE: The paper description uses variances insteas of scales for the likelihood
# but the implementation uses scales. Our implmenetation uses variances

import numpy as np

bayesflow_benchmark_info = {
    "simulator_is_batched": False,
    "parameter_names": [r"$\mu_1$", r"$\mu_2$"],
    "configurator_info": "posterior",
}


[docs] def prior(lower_bound=-10.0, upper_bound=10.0, D=2, rng=None): """Generates a random draw from a 2-dimensional uniform prior bounded between `lower_bound` and `upper_bound` representing the common mean of a 2D Gaussian mixture model (GMM). Parameters ---------- lower_bound : float, optional, default : -10 The lower bound of the uniform prior upper_bound : float, optional, default : 10 The upper bound of the uniform prior D : int, optional, default: 2 The dimensionality of the mixture model rng : np.random.Generator or None, default: None An optional random number generator to use Returns ------- theta : np.ndarray of shape (D, ) A single draw from the D-dimensional uniform prior """ if rng is None: rng = np.random.default_rng() return rng.uniform(low=lower_bound, high=upper_bound, size=D)
[docs] def simulator(theta, prob=0.5, scale_c1=1.0, scale_c2=0.1, rng=None): """Simulates data from the Gaussian mixture model (GMM) with shared location vector. For more details, see https://arxiv.org/pdf/2101.04653.pdf, Benchmark Task T.7 Important: The parameterization uses scales, so use sqrt(var), if you want to be working with variances instead of scales. Parameters ---------- theta : np.ndarray of shape (D,) The D-dimensional vector of parameter locations. prob : float, optional, default: 0.5 The mixture probability (coefficient). scale_c1 : float, optional, default: 1. The scale of the first component scale_c2 : float, optional, default: 0.1 The scale of the second component rng : np.random.Generator or None, default: None An optional random number generator to use Returns ------- x : np.ndarray of shape (2,) The 2D vector generated from the GMM simulator. """ # Use default RNG, if None specified if rng is None: rng = np.random.default_rng() # Draw component index idx = rng.binomial(n=1, p=prob) # Draw 2D-Gaussian sample according to component index if idx == 0: return rng.normal(loc=theta, scale=scale_c1) return rng.normal(loc=theta, scale=scale_c2)
[docs] def configurator(forward_dict, mode="posterior", scale_data=12): """Configures simulator outputs for use in BayesFlow training.""" # Case only posterior configuration if mode == "posterior": input_dict = _config_posterior(forward_dict, scale_data) # Case only likelihood configuration elif mode == "likelihood": input_dict = _config_likelihood(forward_dict, scale_data) # Case posterior and likelihood configuration elif mode == "joint": input_dict = {} input_dict["posterior_inputs"] = _config_posterior(forward_dict, scale_data) input_dict["likelihood_inputs"] = _config_likelihood(forward_dict, scale_data) # Throw otherwise else: raise NotImplementedError('For now, only a choice between ["posterior", "likelihood", "joint"] is available!') return input_dict
def _config_posterior(forward_dict, scale_data): """Helper function for posterior configuration.""" input_dict = {} input_dict["parameters"] = forward_dict["prior_draws"].astype(np.float32) input_dict["direct_conditions"] = forward_dict["sim_data"].astype(np.float32) / scale_data return input_dict def _config_likelihood(forward_dict, scale_data): """Helper function for likelihood configuration.""" input_dict = {} input_dict["conditions"] = forward_dict["prior_draws"].astype(np.float32) input_dict["observables"] = forward_dict["sim_data"].astype(np.float32) / scale_data return input_dict