Source code for bayesflow.benchmarks.inverse_kinematics

# Copyright (c) 2022 The BayesFlow Developers

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Corresponds to Task 1 from the paper https://arxiv.org/pdf/2101.10763.pdf


import numpy as np

bayesflow_benchmark_info = {"simulator_is_batched": False, "parameter_names": None, "configurator_info": "posterior"}


[docs] def prior(scales=None, rng=None): """Generates a random draw from a 4-dimensional Gaussian prior distribution with a spherical convariance matrix. The parameters represent a robot's arm configuration, with the first parameter indicating the arm's height and the remaining three are angles. Parameters ---------- scales : np.ndarray of shape (4,) or None, optional, default : None The four scales of the Gaussian prior. If ``None`` provided, the scales from https://arxiv.org/pdf/2101.10763.pdf will be used: [0.25, 0.5, 0.5, 0.5] rng : np.random.Generator or None, default: None An optional random number generator to use. Returns ------- theta : np.ndarray of shape (4, ) A single draw from the 4-dimensional Gaussian prior. """ if rng is None: rng = np.random.default_rng() if scales is None: scales = np.array([0.25, 0.5, 0.5, 0.5]) return rng.normal(loc=0, scale=scales)
[docs] def simulator(theta, l1=0.5, l2=0.5, l3=1.0, **kwargs): """Returns the 2D coordinates of a robot arm given parameter vector. The first parameter represents the arm's height and the remaining three correspond to angles. Parameters ---------- theta : np.ndarray of shape (theta, ) The four model parameters which will determine the coordinates l1 : float, optional, default: 0.5 The length of the first segment l2 : float, optional, default: 0.5 The length of the second segment l3 : float, optional, default: 1.0 The length of the third segment **kwargs : dict, optional, default: {} Used for comptability with the other benchmarks, as the model is deterministic Returns ------- x : np.ndarray of shape (2, ) The 2D coordinates of the arm """ # Determine 2D position x1 = l1 * np.sin(theta[1]) x1 += l2 * np.sin(theta[1] + theta[2]) x1 += l3 * np.sin(theta[1] + theta[2] + theta[3]) + theta[0] x2 = l1 * np.cos(theta[1]) x2 += l2 * np.cos(theta[1] + theta[2]) x2 += l3 * np.cos(theta[1] + theta[2] + theta[3]) return np.array([x1, x2])
[docs] def configurator(forward_dict, mode="posterior"): """Configures simulator outputs for use in BayesFlow training.""" # Case only posterior configuration if mode == "posterior": input_dict = _config_posterior(forward_dict) # Case only likelihood configuration elif mode == "likelihood": input_dict = _config_likelihood(forward_dict) # Case posterior and likelihood configuration elif mode == "joint": input_dict = {} input_dict["posterior_inputs"] = _config_posterior(forward_dict) input_dict["likelihood_inputs"] = _config_likelihood(forward_dict) # Throw otherwise else: raise NotImplementedError('For now, only a choice between ["posterior", "likelihood", "joint"] is available!') return input_dict
def _config_posterior(forward_dict): """Helper function for posterior configuration.""" input_dict = {} input_dict["parameters"] = forward_dict["prior_draws"].astype(np.float32) input_dict["direct_conditions"] = forward_dict["sim_data"].astype(np.float32) return input_dict def _config_likelihood(forward_dict): """Helper function for likelihood configuration.""" input_dict = {} input_dict["conditions"] = forward_dict["prior_draws"].astype(np.float32) input_dict["observables"] = forward_dict["sim_data"].astype(np.float32) return input_dict