Source code for bayesflow.benchmarks.sir

# Copyright (c) 2022 The BayesFlow Developers

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Corresponds to Task T.9 from the paper https://arxiv.org/pdf/2101.04653.pdf

import numpy as np
from scipy.integrate import odeint

bayesflow_benchmark_info = {
    "simulator_is_batched": False,
    "parameter_names": [r"$\beta$", r"$\gamma$"],
    "configurator_info": "posterior",
}


[docs] def prior(rng=None): """Generates a random draw from a 2-dimensional (independent) lognormal prior which represents the contact and recovery rate parameters of a basic SIR model. Parameters ---------- rng : np.random.Generator or None, default: None An optional random number generator to use. Returns ------- theta : np.ndarray of shape (2,) A single draw from the 2-dimensional prior. """ if rng is None: rng = np.random.default_rng() theta = rng.lognormal(mean=[np.log(0.4), np.log(1 / 8)], sigma=[0.5, 0.2]) return theta
def _deriv(x, t, N, beta, gamma): """Helper function for scipy.integrate.odeint.""" S, I, R = x dS = -beta * S * I / N dI = beta * S * I / N - gamma * I dR = gamma * I return dS, dI, dR
[docs] def simulator(theta, N=1e6, T=160, I0=1.0, R0=0.0, subsample=10, total_count=1000, scale_by_total=True, rng=None): """Runs a basic SIR model simulation for T time steps and returns `subsample` evenly spaced points from the simulated trajectory, given disease parameters (contact and recovery rate) `theta`. See https://arxiv.org/pdf/2101.04653.pdf, Benchmark Task T.9. Note, that the simulator will scale the outputs between 0 and 1. Parameters ---------- theta : np.ndarray of shape (2,) The 2-dimensional vector of disease parameters. N : float, optional, default: 1e6 = 1 000 000 The size of the simulated population. T : T, optional, default: 160 The duration (time horizon) of the simulation. I0 : float, optional, default: 1. The number of initially infected individuals. R0 : float, optional, default: 0. The number of initially recovered individuals. subsample : int or None, optional, default: 10 The number of evenly spaced time points to return. If None, no subsampling will be performed and all T timepoints will be returned. total_count : int, optional, default: 1000 The N parameter of the binomial noise distribution. Used just for scaling the data and magnifying the effect of noise, such that max infected == total_count. scale_by_total : bool, optional, default: True Scales the outputs by ``total_count`` if set to True. rng : np.random.Generator or None, default: None An optional random number generator to use. Returns ------- x : np.ndarray of shape (subsample,) or (T,) if subsample=None The time series of simulated infected individuals. A trailing dimension of 1 should be added by a BayesFlow configurator if the data is (properly) to be treated as time series. """ # Use default RNG, if None specified if rng is None: rng = np.random.default_rng() # Create vector (list) of initial conditions x0 = N - I0 - R0, I0, R0 # Unpack parameter vector into scalars beta, gamma = theta # Prepate time vector between 0 and T of length T t_vec = np.linspace(0, T, T) # Integrate using scipy and retain only infected (2-nd dimension) irt = odeint(_deriv, x0, t_vec, args=(N, beta, gamma))[:, 1] # Subsample evenly the specified number of points, if specified if subsample is not None: irt = irt[:: (T // subsample)] # Truncate irt, so that small underflow below zero becomes zero irt = np.maximum(irt, 0.0) # Add noise and scale, if indicated x = rng.binomial(n=total_count, p=irt / N) if scale_by_total: x = x / total_count return x
[docs] def configurator(forward_dict, mode="posterior", as_summary_condition=False): """Configures simulator outputs for use in BayesFlow training.""" # Case only posterior configuration if mode == "posterior": input_dict = _config_posterior(forward_dict, as_summary_condition) # Case only likelihood configuration elif mode == "likelihood": input_dict = _config_likelihood(forward_dict) # Case posterior and likelihood configuration elif mode == "joint": input_dict = {} input_dict["posterior_inputs"] = _config_posterior(forward_dict, as_summary_condition) input_dict["likelihood_inputs"] = _config_likelihood(forward_dict) # Throw otherwise else: raise NotImplementedError('For now, only a choice between ["posterior", "likelihood", "joint"] is available!') return input_dict
def _config_posterior(forward_dict, as_summary_condition): """Helper function for posterior configuration.""" input_dict = {} input_dict["parameters"] = forward_dict["prior_draws"].astype(np.float32) if as_summary_condition: input_dict["summary_conditions"] = forward_dict["sim_data"].astype(np.float32)[:, :, np.newaxis] else: input_dict["direct_conditions"] = forward_dict["sim_data"].astype(np.float32) return input_dict def _config_likelihood(forward_dict): """Helper function for likelihood configuration.""" input_dict = {} input_dict["conditions"] = forward_dict["prior_draws"].astype(np.float32) input_dict["observables"] = forward_dict["sim_data"].astype(np.float32) return input_dict