Source code for bayesflow.benchmarks.two_moons

# Copyright (c) 2022 The BayesFlow Developers

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Corresponds to Task T.8 from the paper https://arxiv.org/pdf/2101.04653.pdf

import numpy as np

bayesflow_benchmark_info = {
    "simulator_is_batched": False,
    "parameter_names": [r"$\theta_1$", r"$\theta_2$"],
    "configurator_info": "posterior",
}


[docs] def prior(lower_bound=-1.0, upper_bound=1.0, rng=None): """Generates a random draw from a 2-dimensional uniform prior bounded between `lower_bound` and `upper_bound` which represents the two parameters of the two moons simulator. Parameters ---------- lower_bound : float, optional, default : -1 The lower bound of the uniform prior. upper_bound : float, optional, default : 1 The upper bound of the uniform prior. rng : np.random.Generator or None, default: None An optional random number generator to use. Returns ------- theta : np.ndarray of shape (2,) A single draw from the 2-dimensional uniform prior. """ if rng is None: rng = np.random.default_rng() return rng.uniform(low=lower_bound, high=upper_bound, size=2)
[docs] def simulator(theta, rng=None): """Implements data generation from the two-moons model with a bimodal posterior. See https://arxiv.org/pdf/2101.04653.pdf, Benchmark Task T.8 Parameters ---------- theta : np.ndarray of shape (2,) The vector of two model parameters. rng : np.random.Generator or None, default: None An optional random number generator to use. Returns ------- x : np.ndarray of shape (2,) The 2D vector generated from the two moons simulator. """ # Use default RNG, if None specified if rng is None: rng = np.random.default_rng() # Generate noise alpha = rng.uniform(low=-0.5 * np.pi, high=0.5 * np.pi) r = rng.normal(loc=0.1, scale=0.01) # Forward process rhs1 = np.array([r * np.cos(alpha) + 0.25, r * np.sin(alpha)]) rhs2 = np.array([-np.abs(theta[0] + theta[1]) / np.sqrt(2.0), (-theta[0] + theta[1]) / np.sqrt(2.0)]) return rhs1 + rhs2
[docs] def configurator(forward_dict, mode="posterior"): """Configures simulator outputs for use in BayesFlow training.""" # Case only posterior configuration if mode == "posterior": input_dict = _config_posterior(forward_dict) # Case only plikelihood configuration elif mode == "likelihood": input_dict = _config_likelihood(forward_dict) # Case posterior and likelihood configuration (i.e., joint inference) elif mode == "joint": input_dict = {} input_dict["posterior_inputs"] = _config_posterior(forward_dict) input_dict["likelihood_inputs"] = _config_likelihood(forward_dict) # Throw otherwise else: raise NotImplementedError('For now, only a choice between ["posterior", "likelihood", "joint"] is available!') return input_dict
def _config_posterior(forward_dict): """Helper function for posterior configuration.""" input_dict = {} input_dict["parameters"] = forward_dict["prior_draws"].astype(np.float32) input_dict["direct_conditions"] = forward_dict["sim_data"].astype(np.float32) return input_dict def _config_likelihood(forward_dict): """Helper function for likelihood configuration.""" input_dict = {} input_dict["conditions"] = forward_dict["prior_draws"].astype(np.float32) input_dict["observables"] = forward_dict["sim_data"].astype(np.float32) return input_dict