bayesflow.benchmarks package#
Submodules#
- bayesflow.benchmarks.bernoulli_glm module
- bayesflow.benchmarks.bernoulli_glm_raw module
- bayesflow.benchmarks.gaussian_linear module
- bayesflow.benchmarks.gaussian_linear_uniform module
- bayesflow.benchmarks.gaussian_mixture module
- bayesflow.benchmarks.inverse_kinematics module
- bayesflow.benchmarks.lotka_volterra module
- bayesflow.benchmarks.sir module
- bayesflow.benchmarks.slcp module
- bayesflow.benchmarks.slcp_distractors module
- bayesflow.benchmarks.two_moons module
Module contents#
- bayesflow.benchmarks.get_benchmark_module(benchmark_name)[source]#
Loads the corresponding benchmark file under bayesflow.benchmarks.<benchmark_name> as a module and returns it.
- class bayesflow.benchmarks.Benchmark(name, mode='joint', seed=None, **kwargs)[source]#
Bases:
object
Interface class for a benchmark.
- __init__(name, mode='joint', seed=None, **kwargs)[source]#
Creates a benchmark generative model by using the blueprint contained in a benchmark file.
- Parameters:
- namestr
The name of the benchmark file (without suffix, i.e., .py) to use as a blueprint.
- modestr, otpional, default: ‘joint’
The mode in which to configure the data, should be in (‘joint’, ‘posterior’, ‘likelihood’)
- seedint or None, optional, default: None
The seed to use if reproducibility is required. Will be passed to a numpy RNG.
- **kwargsdict
Optional keyword arguments.
If ‘sim_kwargs’ is present, key-value pairs will be interpreted as arguments for the simulator and propagated accordingly.
If ‘prior_kwargs’ is present, key-value pairs will be interpreted as arguments for the prior and propagated accordingly.