bayesflow.benchmarks.inverse_kinematics module#
- bayesflow.benchmarks.inverse_kinematics.prior(scales=None, rng=None)[source]#
Generates a random draw from a 4-dimensional Gaussian prior distribution with a spherical convariance matrix. The parameters represent a robot’s arm configuration, with the first parameter indicating the arm’s height and the remaining three are angles.
- Parameters:
- scalesnp.ndarray of shape (4,) or None, optional, defaultNone
The four scales of the Gaussian prior. If
None
provided, the scales from https://arxiv.org/pdf/2101.10763.pdf will be used: [0.25, 0.5, 0.5, 0.5]- rngnp.random.Generator or None, default: None
An optional random number generator to use.
- Returns:
- thetanp.ndarray of shape (4, )
A single draw from the 4-dimensional Gaussian prior.
- bayesflow.benchmarks.inverse_kinematics.simulator(theta, l1=0.5, l2=0.5, l3=1.0, **kwargs)[source]#
Returns the 2D coordinates of a robot arm given parameter vector. The first parameter represents the arm’s height and the remaining three correspond to angles.
- Parameters:
- thetanp.ndarray of shape (theta, )
The four model parameters which will determine the coordinates
- l1float, optional, default: 0.5
The length of the first segment
- l2float, optional, default: 0.5
The length of the second segment
- l3float, optional, default: 1.0
The length of the third segment
- **kwargsdict, optional, default: {}
Used for comptability with the other benchmarks, as the model is deterministic
- Returns:
- xnp.ndarray of shape (2, )
The 2D coordinates of the arm