bayesflow.configuration module#
- class bayesflow.configuration.DefaultJointConfigurator(default_float_type=<class 'numpy.float32'>)[source]#
Bases:
object
Fallback class for a generic configurator for joint posterior and likelihood approximation.
- class bayesflow.configuration.DefaultLikelihoodConfigurator(default_float_type=<class 'numpy.float32'>)[source]#
Bases:
object
Fallback class for a generic configrator for amortized likelihood approximation.
- class bayesflow.configuration.DefaultCombiner[source]#
Bases:
object
Fallback class for a generic combiner of conditions.
- class bayesflow.configuration.DefaultPosteriorConfigurator(default_float_type=<class 'numpy.float32'>)[source]#
Bases:
object
Fallback class for a generic configrator for amortized posterior approximation.
- class bayesflow.configuration.DefaultModelComparisonConfigurator(num_models, combiner=None, default_float_type=<class 'numpy.float32'>)[source]#
Bases:
object
Fallback class for a default configurator for amortized model comparison.
- __call__(forward_dict)[source]#
Convert all variables to arrays and combines them for inference into a dictionary with the following keys, if DEFAULT_KEYS dictionary unchanged:
model_indices - a list of model indices, e.g., if two models, then [0, 1] model_outputs - a list of dictionaries, e.g., if two models, then [dict0, dict1]