Source code for bayesflow.adapters.transforms.log
import numpy as np
from bayesflow.utils.serialization import serializable, serialize
from .elementwise_transform import ElementwiseTransform
[docs]
@serializable("bayesflow.adapters")
class Log(ElementwiseTransform):
"""Log transforms a variable.
Parameters
----------
p1 : boolean
Add 1 to the input before taking the logarithm?
Examples
--------
>>> adapter = bf.Adapter().log(["x"])
"""
def __init__(self, *, p1: bool = False):
super().__init__()
self.p1 = p1
[docs]
def forward(self, data: np.ndarray, **kwargs) -> np.ndarray:
if self.p1:
return np.log1p(data)
else:
return np.log(data)
[docs]
def inverse(self, data: np.ndarray, **kwargs) -> np.ndarray:
if self.p1:
return np.expm1(data)
else:
return np.exp(data)
[docs]
def get_config(self) -> dict:
return serialize({"p1": self.p1})
[docs]
def log_det_jac(self, data: np.ndarray, inverse: bool = False, **kwargs) -> np.ndarray:
if self.p1:
ldj = -np.log1p(data)
else:
ldj = -np.log(data)
if inverse:
ldj = -ldj
return np.sum(ldj, axis=tuple(range(1, ldj.ndim)))