Source code for bayesflow.networks.flow_matching.flow_matching

from collections.abc import Sequence

import keras
from keras.saving import register_keras_serializable as serializable

from bayesflow.types import Shape, Tensor
from bayesflow.utils import (
    expand_right_as,
    find_network,
    integrate,
    jacobian_trace,
    keras_kwargs,
    optimal_transport,
    serialize_value_or_type,
    deserialize_value_or_type,
    weighted_sum,
)
from ..inference_network import InferenceNetwork


[docs] @serializable(package="bayesflow.networks") class FlowMatching(InferenceNetwork): """Implements Optimal Transport Flow Matching, originally introduced as Rectified Flow, with ideas incorporated from [1-3]. [1] Rectified Flow: arXiv:2209.03003 [2] Flow Matching: arXiv:2210.02747 [3] Optimal Transport Flow Matching: arXiv:2302.00482 """ MLP_DEFAULT_CONFIG = { "widths": (256, 256, 256, 256, 256), "activation": "mish", "kernel_initializer": "he_normal", "residual": True, "dropout": 0.05, "spectral_normalization": False, } OPTIMAL_TRANSPORT_DEFAULT_CONFIG = { "method": "sinkhorn", "cost": "euclidean", "regularization": 0.1, "max_steps": 100, "tolerance": 1e-4, } INTEGRATE_DEFAULT_CONFIG = { "method": "euler", "steps": 100, } def __init__( self, subnet: str | type = "mlp", base_distribution: str = "normal", use_optimal_transport: bool = True, loss_fn: str = "mse", integrate_kwargs: dict[str, any] = None, optimal_transport_kwargs: dict[str, any] = None, subnet_kwargs: dict[str, any] = None, **kwargs, ): """ Initializes a flow-based model with configurable subnet architecture, loss function, and optional optimal transport integration. This model learns a transformation from a base distribution to a target distribution using a specified subnet type, which can be an MLP or a custom network. It supports flow matching with optional optimal transport for improved sample efficiency. The integration and transport steps can be customized with additional parameters available in the respective configuration dictionaries. Parameters ---------- subnet : str or type, optional The architecture used for the transformation network. Can be "mlp" or a custom callable network. Default is "mlp". base_distribution : str, optional The base probability distribution from which samples are drawn, such as "normal". Default is "normal". use_optimal_transport : bool, optional Whether to apply optimal transport for improved training stability. Default is False. loss_fn : str, optional The loss function used for training, such as "mse". Default is "mse". integrate_kwargs : dict[str, any], optional Additional keyword arguments for the integration process. Default is None. optimal_transport_kwargs : dict[str, any], optional Additional keyword arguments for configuring optimal transport. Default is None. subnet_kwargs: dict[str, any], optional Keyword arguments passed to the subnet constructor or used to update the default MLP settings. **kwargs Additional keyword arguments passed to the subnet and other components. """ super().__init__(base_distribution=base_distribution, **keras_kwargs(kwargs)) self.use_optimal_transport = use_optimal_transport self.integrate_kwargs = FlowMatching.INTEGRATE_DEFAULT_CONFIG | (integrate_kwargs or {}) self.optimal_transport_kwargs = FlowMatching.OPTIMAL_TRANSPORT_DEFAULT_CONFIG | (optimal_transport_kwargs or {}) self.loss_fn = keras.losses.get(loss_fn) self.seed_generator = keras.random.SeedGenerator() subnet_kwargs = subnet_kwargs or {} if subnet == "mlp": subnet_kwargs = FlowMatching.MLP_DEFAULT_CONFIG | subnet_kwargs self.subnet = find_network(subnet, **subnet_kwargs) self.output_projector = keras.layers.Dense(units=None, bias_initializer="zeros") # serialization: store all parameters necessary to call __init__ self.config = { "base_distribution": base_distribution, "use_optimal_transport": self.use_optimal_transport, "optimal_transport_kwargs": self.optimal_transport_kwargs, "integrate_kwargs": self.integrate_kwargs, "subnet_kwargs": subnet_kwargs, **kwargs, } self.config = serialize_value_or_type(self.config, "subnet", subnet)
[docs] def build(self, xz_shape: Shape, conditions_shape: Shape = None) -> None: super().build(xz_shape, conditions_shape=conditions_shape) self.output_projector.units = xz_shape[-1] input_shape = list(xz_shape) # construct time vector input_shape[-1] += 1 if conditions_shape is not None: input_shape[-1] += conditions_shape[-1] input_shape = tuple(input_shape) self.subnet.build(input_shape) out_shape = self.subnet.compute_output_shape(input_shape) self.output_projector.build(out_shape)
[docs] def get_config(self): base_config = super().get_config() return base_config | self.config
[docs] @classmethod def from_config(cls, config): config = deserialize_value_or_type(config, "subnet") return cls(**config)
[docs] def velocity(self, xz: Tensor, time: float | Tensor, conditions: Tensor = None, training: bool = False) -> Tensor: time = keras.ops.convert_to_tensor(time, dtype=keras.ops.dtype(xz)) time = expand_right_as(time, xz) time = keras.ops.broadcast_to(time, keras.ops.shape(xz)[:-1] + (1,)) if conditions is None: xtc = keras.ops.concatenate([xz, time], axis=-1) else: xtc = keras.ops.concatenate([xz, time, conditions], axis=-1) return self.output_projector(self.subnet(xtc, training=training), training=training)
def _velocity_trace( self, xz: Tensor, time: Tensor, conditions: Tensor = None, max_steps: int = None, training: bool = False ) -> (Tensor, Tensor): def f(x): return self.velocity(x, time=time, conditions=conditions, training=training) v, trace = jacobian_trace(f, xz, max_steps=max_steps, seed=self.seed_generator, return_output=True) return v, keras.ops.expand_dims(trace, axis=-1) def _forward( self, x: Tensor, conditions: Tensor = None, density: bool = False, training: bool = False, **kwargs ) -> Tensor | tuple[Tensor, Tensor]: if density: def deltas(time, xz): v, trace = self._velocity_trace(xz, time=time, conditions=conditions, training=training) return {"xz": v, "trace": trace} state = {"xz": x, "trace": keras.ops.zeros(keras.ops.shape(x)[:-1] + (1,), dtype=keras.ops.dtype(x))} state = integrate(deltas, state, start_time=1.0, stop_time=0.0, **(self.integrate_kwargs | kwargs)) z = state["xz"] log_density = self.base_distribution.log_prob(z) + keras.ops.squeeze(state["trace"], axis=-1) return z, log_density def deltas(time, xz): return {"xz": self.velocity(xz, time=time, conditions=conditions, training=training)} state = {"xz": x} state = integrate(deltas, state, start_time=1.0, stop_time=0.0, **(self.integrate_kwargs | kwargs)) z = state["xz"] return z def _inverse( self, z: Tensor, conditions: Tensor = None, density: bool = False, training: bool = False, **kwargs ) -> Tensor | tuple[Tensor, Tensor]: if density: def deltas(time, xz): v, trace = self._velocity_trace(xz, time=time, conditions=conditions, training=training) return {"xz": v, "trace": trace} state = {"xz": z, "trace": keras.ops.zeros(keras.ops.shape(z)[:-1] + (1,), dtype=keras.ops.dtype(z))} state = integrate(deltas, state, start_time=0.0, stop_time=1.0, **(self.integrate_kwargs | kwargs)) x = state["xz"] log_density = self.base_distribution.log_prob(z) - keras.ops.squeeze(state["trace"], axis=-1) return x, log_density def deltas(time, xz): return {"xz": self.velocity(xz, time=time, conditions=conditions, training=training)} state = {"xz": z} state = integrate(deltas, state, start_time=0.0, stop_time=1.0, **(self.integrate_kwargs | kwargs)) x = state["xz"] return x
[docs] def compute_metrics( self, x: Tensor | Sequence[Tensor, ...], conditions: Tensor = None, sample_weight: Tensor = None, stage: str = "training", ) -> dict[str, Tensor]: if isinstance(x, Sequence): # already pre-configured x0, x1, t, x, target_velocity = x else: # not pre-configured, resample x1 = x if not self.built: xz_shape = keras.ops.shape(x1) conditions_shape = None if conditions is None else keras.ops.shape(conditions) self.build(xz_shape, conditions_shape) x0 = self.base_distribution.sample(keras.ops.shape(x1)[:-1]) if self.use_optimal_transport: x1, x0, conditions = optimal_transport( x1, x0, conditions, seed=self.seed_generator, **self.optimal_transport_kwargs ) t = keras.random.uniform((keras.ops.shape(x0)[0],), seed=self.seed_generator) t = expand_right_as(t, x0) x = t * x1 + (1 - t) * x0 target_velocity = x1 - x0 base_metrics = super().compute_metrics(x1, conditions=conditions, stage=stage) predicted_velocity = self.velocity(x, time=t, conditions=conditions, training=stage == "training") loss = self.loss_fn(target_velocity, predicted_velocity) loss = weighted_sum(loss, sample_weight) return base_metrics | {"loss": loss}