Source code for bayesflow.scores.mean_score

from keras.saving import register_keras_serializable as serializable

from .normed_difference_score import NormedDifferenceScore


[docs] @serializable(package="bayesflow.scores") class MeanScore(NormedDifferenceScore): r""":math:`S(\hat \theta, \theta) = | \hat \theta - \theta |^2` Scores a predicted mean with the squared error score. """ def __init__(self, **kwargs): super().__init__(k=2, **kwargs) self.config = {}