Source code for bayesflow.scores.mean_score
from keras.saving import register_keras_serializable as serializable
from .normed_difference_score import NormedDifferenceScore
[docs]
@serializable(package="bayesflow.scores")
class MeanScore(NormedDifferenceScore):
r""":math:`S(\hat \theta, \theta) = | \hat \theta - \theta |^2`
Scores a predicted mean with the squared error score.
"""
def __init__(self, **kwargs):
super().__init__(k=2, **kwargs)
self.config = {}