Source code for bayesflow.simulators.model_comparison_simulator

from collections.abc import Sequence
import numpy as np

from bayesflow.types import Shape
from bayesflow.utils import tree_concatenate
from bayesflow.utils.decorators import allow_batch_size

from bayesflow.utils import numpy_utils as npu

from types import FunctionType

from .simulator import Simulator
from .lambda_simulator import LambdaSimulator


[docs] class ModelComparisonSimulator(Simulator): """Wraps a sequence of simulators for use with a model comparison approximator.""" def __init__( self, simulators: Sequence[Simulator], p: Sequence[float] = None, logits: Sequence[float] = None, use_mixed_batches: bool = True, shared_simulator: Simulator | FunctionType = None, ): """ Initialize a multi-model simulator that can generate data for mixture / model comparison problems. Parameters ---------- simulators : Sequence[Simulator] A sequence of simulator instances, each representing a different model. p : Sequence[float], optional A sequence of probabilities associated with each simulator. Must sum to 1. Mutually exclusive with `logits`. logits : Sequence[float], optional A sequence of logits corresponding to model probabilities. Mutually exclusive with `p`. If neither `p` nor `logits` is provided, defaults to uniform logits. use_mixed_batches : bool, optional If True, samples in a batch are drawn from different models. If False, the entire batch is drawn from a single model chosen according to the model probabilities. Default is True. shared_simulator : Simulator or FunctionType, optional A shared simulator whose outputs are passed to all model simulators. If a function is provided, it is wrapped in a `LambdaSimulator` with batching enabled. """ self.simulators = simulators if isinstance(shared_simulator, FunctionType): shared_simulator = LambdaSimulator(shared_simulator, is_batched=True) self.shared_simulator = shared_simulator match logits, p: case (None, None): logits = [0.0] * len(simulators) case (None, logits): logits = logits case (p, None): p = np.array(p) if not np.isclose(np.sum(p), 1.0): raise ValueError("Probabilities must sum to 1.") logits = np.log(p) - np.log(1 - p) case _: raise ValueError("Received conflicting arguments. At most one of `p` or `logits` must be provided.") if len(logits) != len(simulators): raise ValueError(f"Length of logits ({len(logits)}) must match number of simulators ({len(simulators)}).") self.logits = logits self.use_mixed_batches = use_mixed_batches
[docs] @allow_batch_size def sample(self, batch_shape: Shape, **kwargs) -> dict[str, np.ndarray]: """ Sample from the model comparison simulator. Parameters ---------- batch_shape : Shape The shape of the batch to sample. Typically, a tuple indicating the number of samples, but the user can also supply an int. **kwargs Additional keyword arguments passed to each simulator. These may include outputs from the shared simulator. Returns ------- data : dict of str to np.ndarray A dictionary containing the sampled outputs. Includes: - outputs from the selected simulator(s) - optionally, outputs from the shared simulator - "model_indices": a one-hot encoded array indicating the model origin of each sample """ data = {} if self.shared_simulator: data |= self.shared_simulator.sample(batch_shape, **kwargs) softmax_logits = npu.softmax(self.logits) num_models = len(self.simulators) # generate data randomly from each model (slower) if self.use_mixed_batches: model_counts = np.random.multinomial(n=batch_shape[0], pvals=softmax_logits) sims = [ simulator.sample(n, **(kwargs | data)) for simulator, n in zip(self.simulators, model_counts) if n > 0 ] sims = tree_concatenate(sims, numpy=True) data |= sims model_indices = np.repeat(np.eye(num_models, dtype="int32"), model_counts, axis=0) # draw one model index for the whole batch (faster) else: model_index = np.random.choice(num_models, p=softmax_logits) data = self.simulators[model_index].sample(batch_shape, **(kwargs | data)) model_indices = npu.one_hot(np.full(batch_shape, model_index, dtype="int32"), num_models) return data | {"model_indices": model_indices}