Source code for bayesflow.utils.numpy_utils

import numpy as np
from scipy import special


[docs] def inverse_sigmoid(x: np.ndarray) -> np.ndarray: """Inverse of the sigmoid function.""" return np.log(x) - np.log1p(-x)
[docs] def inverse_shifted_softplus( x: np.ndarray, shift: float = np.log(np.e - 1), beta: float = 1.0, threshold: float = 20.0 ) -> np.ndarray: """Inverse of the shifted softplus function.""" return inverse_softplus(x, beta=beta, threshold=threshold) - shift
[docs] def inverse_softplus(x: np.ndarray, beta: float = 1.0, threshold: float = 20.0) -> np.ndarray: """Numerically stabilized inverse softplus function.""" with np.errstate(over="ignore"): expm1_x = np.expm1(x) return np.where(beta * x > threshold, x, np.log(beta * expm1_x) / beta)
[docs] def one_hot(indices: np.ndarray, num_classes: int, dtype: str = "float32") -> np.ndarray: """Converts a 1D array of indices to a one-hot encoded 2D array.""" return np.eye(num_classes, dtype=dtype)[indices]
[docs] def shifted_softplus( x: np.ndarray, beta: float = 1.0, threshold: float = 20.0, shift: float = np.log(np.e - 1) ) -> np.ndarray: """Shifted version of the softplus function such that shifted_softplus(0) = 1""" return softplus(x + shift, beta=beta, threshold=threshold)
sigmoid = special.expit softmax = special.softmax
[docs] def softplus(x: np.ndarray, beta: float = 1.0, threshold: float = 20.0) -> np.ndarray: """Numerically stabilized softplus function.""" with np.errstate(over="ignore"): exp_beta_x = np.exp(beta * x) return np.where(beta * x > threshold, x, np.log1p(exp_beta_x) / beta)