Source code for bayesflow.diagnostics.metrics.posterior_contraction

from collections.abc import Sequence, Mapping, Callable

import numpy as np

from ...utils.dict_utils import dicts_to_arrays


[docs] def posterior_contraction( estimates: Mapping[str, np.ndarray] | np.ndarray, targets: Mapping[str, np.ndarray] | np.ndarray, variable_keys: Sequence[str] = None, variable_names: Sequence[str] = None, aggregation: Callable = np.median, ) -> dict[str, any]: """ Computes the posterior contraction (PC) from prior to posterior for the given samples. Parameters ---------- estimates : np.ndarray of shape (num_datasets, num_draws_post, num_variables) Posterior samples, comprising `num_draws_post` random draws from the posterior distribution for each data set from `num_datasets`. targets : np.ndarray of shape (num_datasets, num_variables) Prior samples, comprising `num_datasets` ground truths. variable_keys : Sequence[str], optional (default = None) Select keys from the dictionaries provided in estimates and targets. By default, select all keys. variable_names : Sequence[str], optional (default = None) Optional variable names to show in the output. aggregation : callable, optional (default = np.median) Function to aggregate the PC across draws. Typically `np.mean` or `np.median`. Returns ------- result : dict Dictionary containing: - "values" : float or np.ndarray The aggregated posterior contraction per variable - "metric_name" : str The name of the metric ("Posterior Contraction"). - "variable_names" : str The (inferred) variable names. Notes ----- Posterior contraction measures the reduction in uncertainty from the prior to the posterior. Values close to 1 indicate strong contraction (high reduction in uncertainty), while values close to 0 indicate low contraction. """ samples = dicts_to_arrays( estimates=estimates, targets=targets, variable_keys=variable_keys, variable_names=variable_names, ) post_vars = samples["estimates"].var(axis=1, ddof=1) prior_vars = samples["targets"].var(axis=0, keepdims=True, ddof=1) contraction = np.clip(1 - (post_vars / prior_vars), 0, 1) contraction = aggregation(contraction, axis=0) variable_names = samples["estimates"].variable_names return {"values": contraction, "metric_name": "Posterior Contraction", "variable_names": variable_names}