Source code for bayesflow.diagnostics.metrics.posterior_contraction
from collections.abc import Sequence, Mapping, Callable
import numpy as np
from ...utils.dict_utils import dicts_to_arrays
[docs]
def posterior_contraction(
estimates: Mapping[str, np.ndarray] | np.ndarray,
targets: Mapping[str, np.ndarray] | np.ndarray,
variable_keys: Sequence[str] = None,
variable_names: Sequence[str] = None,
aggregation: Callable = np.median,
) -> dict[str, any]:
"""
Computes the posterior contraction (PC) from prior to posterior for the given samples.
Parameters
----------
estimates : np.ndarray of shape (num_datasets, num_draws_post, num_variables)
Posterior samples, comprising `num_draws_post` random draws from the posterior distribution
for each data set from `num_datasets`.
targets : np.ndarray of shape (num_datasets, num_variables)
Prior samples, comprising `num_datasets` ground truths.
variable_keys : Sequence[str], optional (default = None)
Select keys from the dictionaries provided in estimates and targets.
By default, select all keys.
variable_names : Sequence[str], optional (default = None)
Optional variable names to show in the output.
aggregation : callable, optional (default = np.median)
Function to aggregate the PC across draws. Typically `np.mean` or `np.median`.
Returns
-------
result : dict
Dictionary containing:
- "values" : float or np.ndarray
The aggregated posterior contraction per variable
- "metric_name" : str
The name of the metric ("Posterior Contraction").
- "variable_names" : str
The (inferred) variable names.
Notes
-----
Posterior contraction measures the reduction in uncertainty from the prior to the posterior.
Values close to 1 indicate strong contraction (high reduction in uncertainty), while values close to 0
indicate low contraction.
"""
samples = dicts_to_arrays(
estimates=estimates,
targets=targets,
variable_keys=variable_keys,
variable_names=variable_names,
)
post_vars = samples["estimates"].var(axis=1, ddof=1)
prior_vars = samples["targets"].var(axis=0, keepdims=True, ddof=1)
contraction = np.clip(1 - (post_vars / prior_vars), 0, 1)
contraction = aggregation(contraction, axis=0)
variable_names = samples["estimates"].variable_names
return {"values": contraction, "metric_name": "Posterior Contraction", "variable_names": variable_names}