posterior_contraction#
- bayesflow.diagnostics.posterior_contraction(estimates: ~typing.Mapping[str, ~numpy.ndarray] | ~numpy.ndarray, targets: ~typing.Mapping[str, ~numpy.ndarray] | ~numpy.ndarray, variable_keys: ~typing.Sequence[str] = None, variable_names: ~typing.Sequence[str] = None, aggregation: ~typing.Callable = <function median>) Mapping[str, Any] [source]#
Computes the posterior contraction (PC) from prior to posterior for the given samples.
- Parameters:
- estimatesnp.ndarray of shape (num_datasets, num_draws_post, num_variables)
Posterior samples, comprising num_draws_post random draws from the posterior distribution for each data set from num_datasets.
- targetsnp.ndarray of shape (num_datasets, num_variables)
Prior samples, comprising num_datasets ground truths.
- variable_keysSequence[str], optional (default = None)
Select keys from the dictionaries provided in estimates and targets. By default, select all keys.
- variable_namesSequence[str], optional (default = None)
Optional variable names to show in the output.
- aggregationcallable, optional (default = np.median)
Function to aggregate the PC across draws. Typically np.mean or np.median.
- Returns:
- resultdict
Dictionary containing:
- “values”float or np.ndarray
The aggregated posterior contraction per variable
- “metric_name”str
The name of the metric (“Posterior Contraction”).
- “variable_names”str
The (inferred) variable names.
Notes
Posterior contraction measures the reduction in uncertainty from the prior to the posterior. Values close to 1 indicate strong contraction (high reduction in uncertainty), while values close to 0 indicate low contraction.