recovery#

bayesflow.diagnostics.recovery(estimates: dict[str, ~numpy.ndarray] | ~numpy.ndarray, targets: dict[str, ~numpy.ndarray] | ~numpy.ndarray, variable_keys: ~typing.Sequence[str] = None, variable_names: ~typing.Sequence[str] = None, point_agg=<function median>, uncertainty_agg=<function median_abs_deviation>, add_corr: bool = True, figsize: ~typing.Sequence[int] = None, label_fontsize: int = 16, title_fontsize: int = 18, metric_fontsize: int = 16, tick_fontsize: int = 12, color: str = '#132a70', num_col: int = None, num_row: int = None, xlabel: str = 'Ground truth', ylabel: str = 'Estimate', **kwargs) Figure[source]#

Creates and plots publication-ready recovery plot with true estimate vs. point estimate + uncertainty. The point estimate can be controlled with the point_agg argument, and the uncertainty estimate can be controlled with the uncertainty_agg argument.

This plot yields similar information as the “posterior z-score”, but allows for generic point and uncertainty estimates:

https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html

Important: Posterior aggregates play no special role in Bayesian inference and should only be used heuristically. For instance, in the case of multi-modal posteriors, common point estimates, such as mean, (geometric) median, or maximum a posteriori (MAP) mean nothing.

Parameters:
estimatesnp.ndarray of shape (num_datasets, num_post_draws, num_params)

The posterior draws obtained from num_datasets

targetsnp.ndarray of shape (num_datasets, num_params)

The prior draws (true parameters) used for generating the num_datasets

variable_keyslist or None, optional, default: None

Select keys from the dictionaries provided in estimates and targets. By default, select all keys.

variable_nameslist or None, optional, default: None

The individual parameter names for nice plot titles. Inferred if None

point_aggfunction to compute point estimates. Default: median
uncertainty_aggfunction to compute uncertainty estimates. Default: MAD
add_corrboolean, default: True

Should correlations between estimates and ground truth values be shown?

figsizetuple or None, optional, defaultNone

The figure size passed to the matplotlib constructor. Inferred if None.

label_fontsizeint, optional, default: 16

The font size of the y-label text.

title_fontsizeint, optional, default: 18

The font size of the title text.

metric_fontsizeint, optional, default: 16

The font size of the metrics shown as text.

tick_fontsizeint, optional, default: 12

The font size of the axis ticklabels.

colorstr, optional, default: ‘#8f2727’

The color for the true vs. estimated scatter points and error bars.

num_rowint, optional, default: None

The number of rows for the subplots. Dynamically determined if None.

num_colint, optional, default: None

The number of columns for the subplots. Dynamically determined if None.

xlabel:
ylabel:
Returns:
fplt.Figure - the figure instance for optional saving
Raises:
ShapeError

If there is a deviation from the expected shapes of estimates and targets.