LotkaVolterra#
- class bayesflow.simulators.LotkaVolterra(X0: int = 30, Y0: int = 1, T: int | None = 20, subsample: int = 10, flatten: bool = True, obs_noise: float = 0.1, dt: float = None, rng: Generator = None)[source]#
Bases:
BenchmarkSimulator
Lotka Volterra simulated benchmark. See: https://arxiv.org/pdf/2101.04653.pdf, Task T.10
- Parameters:
- X0: int, optional, default: 30
Initial number of prey species.
- Y0: int, optional, default: 1
Initial number of predator species.
- T: int, optional, default: 20
The duration (time horizon) of the simulation.
- subsample: int or None, optional, default: 10
The number of evenly spaced time points to return. If None, no subsampling will be performed and all T timepoints will be returned.
- flatten: bool, optional, default: True
A flag to indicate whether a 1D (flatten=True) or 2D (flatten=False) representation of the simulated data is returned.
- obs_noise: float, optional, default: 0.1
The standard deviation of the log-normal likelihood.
- rng: np.random.Generator or None, optional, default: None
An optional random number generator to use.
- prior()[source]#
Generates a random draw from a 4-dimensional (independent) lognormal prior which represents the four contact parameters of the Lotka-Volterra model.
- Returns:
- paramsnp.ndarray of shape (4, )
A single draw from the 4-dimensional prior.
- observation_model(params: ndarray) ndarray [source]#
Runs a Lotka-Volterra simulation for T time steps and returns subsample evenly spaced points from the simulated trajectory, given contact parameters params.
- Parameters:
- paramsnp.ndarray of shape (2,)
The 2-dimensional vector of disease parameters.
- Returns:
- xnp.ndarray of shape (subsample, 2) or (subsample*2,) if subsample is not None,
otherwise shape (T, 2) or (T*2,) if subsample is None. The time series of simulated predator and pray populations
- rejection_sample(batch_shape: tuple[int, ...], predicate: Callable[[dict[str, ndarray]], ndarray], *, axis: int = 0, sample_size: int = None, **kwargs) dict[str, ndarray] #
- sample(batch_shape: tuple[int, ...], **kwargs) dict[str, ndarray] #
Runs simulated benchmark and returns batch_size parameter and observation batches
- Parameters:
- batch_shape: tuple
Number of parameter-observation batches to simulate.
- Returns:
- dict[str, np.ndarray]: simulated parameters and observables
with shapes (batch_size, …)