calibration_histogram#

bayesflow.diagnostics.calibration_histogram(estimates: dict[str, ndarray] | ndarray, targets: dict[str, ndarray] | ndarray, variable_keys: Sequence[str] = None, variable_names: Sequence[str] = None, figsize: Sequence[float] = None, num_bins: int = 10, binomial_interval: float = 0.99, label_fontsize: int = 16, title_fontsize: int = 18, tick_fontsize: int = 12, color: str = '#132a70', num_col: int = None, num_row: int = None) Figure[source]#

Creates and plots publication-ready histograms of rank statistics for simulation-based calibration (SBC) checks according to [1].

Any deviation from uniformity indicates miscalibration and thus poor convergence of the networks or poor combination between generative model / networks.

[1] Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018). Validating Bayesian inference algorithms with simulation-based calibration. arXiv preprint arXiv:1804.06788.

Parameters:
estimatesnp.ndarray of shape (n_data_sets, n_post_draws, n_params)

The posterior draws obtained from n_data_sets

targetsnp.ndarray of shape (n_data_sets, n_params)

The prior draws obtained for generating n_data_sets

variable_keyslist or None, optional, default: None

Select keys from the dictionaries provided in estimates and targets. By default, select all keys.

variable_nameslist or None, optional, default: None

The parameter names for nice plot titles. Inferred if None

figsizetuple or None, optional, defaultNone

The figure size passed to the matplotlib constructor. Inferred if None

num_binsint, optional, default: 10

The number of bins to use for each marginal histogram

binomial_intervalfloat in (0, 1), optional, default: 0.99

The width of the confidence interval for the binomial distribution

label_fontsizeint, optional, default: 16

The font size of the y-label text

title_fontsizeint, optional, default: 18

The font size of the title text

tick_fontsizeint, optional, default: 12

The font size of the axis ticklabels

colorstr, optional, default ‘#a34f4f’

The color to use for the histogram body

num_rowint, optional, default: None

The number of rows for the subplots. Dynamically determined if None.

num_colint, optional, default: None

The number of columns for the subplots. Dynamically determined if None.

Returns:
fplt.Figure - the figure instance for optional saving
Raises:
ShapeError

If there is a deviation form the expected shapes of estimates and targets.