recovery_from_estimates#
- bayesflow.diagnostics.recovery_from_estimates(estimates: dict[str, dict[str, ~numpy.ndarray]], targets: dict[str, ~numpy.ndarray], marker_mapping: dict[str, str], variable_keys: ~typing.Sequence[str] = None, variable_names: ~typing.Sequence[str] = None, add_corr: bool = True, corr_point_agg: ~collections.abc.Callable = <function median>, figsize: ~typing.Sequence[int] = None, label_fontsize: int = 16, title_fontsize: int = 18, metric_fontsize: int = 16, tick_fontsize: int = 12, color: str = '#132a70', num_col: int = None, num_row: int = None, xlabel: str = 'Ground truth', ylabel: str = 'Estimate', **kwargs) Figure [source]#
Creates and plots publication-ready recovery plot of estimates vs. targets.
This plot yields similar information as the “posterior z-score”, but allows for generic point and uncertainty estimates:
https://betanalpha.github.io/assets/case_studies/principled_bayesian_workflow.html
Important: Posterior aggregates play no special role in Bayesian inference and should only be used heuristically. For instance, in the case of multi-modal posteriors, common point estimates, such as mean, (geometric) median, or maximum a posteriori (MAP) need to be interpreted carefully.
- Parameters:
- estimatesdict[str, dict[str, np.ndarray]]
The model-generated estimates in a nested dictionary, e.g. as returned by approximator.estimate(conditions=…). - The outer keys identify the inference variable. - The inner keys identify point estimates. - The inner value is an ndarray of shape (num_datasets, point_estimate_size, variable_block_size)
- targetsdict[str, np.ndarray]
The prior draws (true parameters) used for generating the num_datasets
- marker_mappingdict[str, str]
Define how to mark different point estimates by their key, e.g. {“quantiles”:”_”, “mean”:”*”}. Only point estimates whose key appears in the dictionary, will be plotted.
- variable_keyslist or None, optional, default: None
Select keys from the dictionaries provided in estimates and targets. By default, select all keys.
- variable_nameslist or None, optional, default: None
The individual parameter names for nice plot titles. Inferred if None
- add_corrboolean, default: True
Should correlations between estimates and ground truth values be shown?
- corr_point_aggCallable
Function producing a central point estimate from the whole list of point estimates in case correlations should be computed. Default: median
- figsizetuple or None, optional, defaultNone
The figure size passed to the matplotlib constructor. Inferred if None.
- label_fontsizeint, optional, default: 16
The font size of the y-label text.
- title_fontsizeint, optional, default: 18
The font size of the title text.
- metric_fontsizeint, optional, default: 16
The font size of the metrics shown as text.
- tick_fontsizeint, optional, default: 12
The font size of the axis ticklabels.
- colorstr, optional, default: ‘#8f2727’
The color for the true vs. estimated scatter points and error bars.
- num_rowint, optional, default: None
The number of rows for the subplots. Dynamically determined if None.
- num_colint, optional, default: None
The number of columns for the subplots. Dynamically determined if None.
- xlabel:
- ylabel:
- Returns:
- fplt.Figure - the figure instance for optional saving
- Raises:
- ShapeError
If there is a deviation from the expected shapes of
estimates
andtargets
.