loss#
- bayesflow.diagnostics.loss(history: History, train_key: str = 'loss', val_key: str = 'val_loss', moving_average: bool = False, per_training_step: bool = False, ma_window_fraction: float = 0.01, figsize: Sequence[float] = None, train_color: str = '#132a70', val_color: str = 'black', lw_train: float = 2.0, lw_val: float = 3.0, legend_fontsize: int = 14, label_fontsize: int = 14, title_fontsize: int = 16) Figure [source]#
A generic helper function to plot the losses of a series of training epochs and runs.
- Parameters:
- historykeras.src.callbacks.History
History object as returned by keras.Model.fit.
- train_keystr, optional, default: “loss”
The training loss key to look for in the history
- val_keystr, optional, default: “val_loss”
The validation loss key to look for in the history
- moving_averagebool, optional, default: False
A flag for adding a moving average line of the train_losses.
- per_training_stepbool, optional, default: False
A flag for making loss trajectory detailed (to training steps) rather than per epoch.
- ma_window_fractionint, optional, default: 0.01
Window size for the moving average as a fraction of total training steps.
- figsizetuple or None, optional, default: None
The figure size passed to the
matplotlib
constructor. Inferred ifNone
- train_colorstr, optional, default: ‘#8f2727’
The color for the train loss trajectory
- val_colorstr, optional, default: black
The color for the optional validation loss trajectory
- lw_trainint, optional, default: 2
The linewidth for the training loss curve
- lw_valint, optional, default: 3
The linewidth for the validation loss curve
- legend_fontsizeint, optional, default: 14
The font size of the legend text
- label_fontsizeint, optional, default: 14
The font size of the y-label text
- title_fontsizeint, optional, default: 16
The font size of the title text
- Returns:
- fplt.Figure - the figure instance for optional saving
- Raises:
- AssertionError
If the number of columns in
train_losses
does not match the number of columns inval_losses
.