loss#
- bayesflow.diagnostics.loss(history: History, train_key: str = 'loss', val_key: str = 'val_loss', per_training_step: bool = False, smoothing_factor: float = 0.8, figsize: Sequence[float] = None, train_color: str = '#132a70', val_color: str = 'black', val_marker: str = 'o', val_marker_size: float = 5, lw_train: float = 2.0, lw_val: float = 2.0, grid_alpha: float = 0.2, legend_fontsize: int = 14, label_fontsize: int = 14, title_fontsize: int = 16) Figure [source]#
A generic helper function to plot the losses of a series of training epochs and runs.
- Parameters:
- historykeras.src.callbacks.History
History object as returned by keras.Model.fit.
- train_keystr, optional, default: “loss”
The training loss key to look for in the history
- val_keystr, optional, default: “val_loss”
The validation loss key to look for in the history
- per_training_stepbool, optional, default: False
A flag for making loss trajectory detailed (to training steps) rather than per epoch.
- smoothing_factorfloat, optional, default: 0.8
If greater than zero, smooth the loss curves by applying an exponential moving average.
- figsizetuple or None, optional, default: None
The figure size passed to the
matplotlib
constructor. Inferred ifNone
- train_colorstr, optional, default: ‘#132a70’
The color for the train loss trajectory
- val_colorstr, optional, default: None
The color for the optional validation loss trajectory
- val_marker: str
Marker style for the validation loss curve. Default is “o”.
- val_marker_size: float
Marker size for the validation loss curve. Default is 5.
- lw_trainint, optional, default: 2
The line width for the training loss curve
- lw_valint, optional, default: 2
The line width for the validation loss curve
- grid_alphafloat, optional, default: 0.2
The transparency of the background grid
- legend_fontsizeint, optional, default: 14
The font size of the legend text
- label_fontsizeint, optional, default: 14
The font size of the y-label text
- title_fontsizeint, optional, default: 16
The font size of the title text
- Returns:
- fplt.Figure - the figure instance for optional saving
- Raises:
- AssertionError
If the number of columns in
train_losses
does not match the number of columns inval_losses
.