MaximumMeanDiscrepancy#

class bayesflow.metrics.MaximumMeanDiscrepancy(name: str = 'maximum_mean_discrepancy', kernel: str = 'inverse_multiquadratic', unbiased: bool = False, **kwargs)[source]#

Bases: Metric

update_state(x, y)[source]#

Accumulate statistics for the metric.

result()[source]#

Compute the current metric value.

Returns:

A scalar tensor, or a dictionary of scalar tensors.

__call__(*args, **kwargs)#

Call self as a function.

add_variable(shape, initializer, dtype=None, aggregation='sum', name=None)#
add_weight(shape=(), initializer=None, dtype=None, name=None)#
property dtype#
classmethod from_config(config)#
get_config()#

Return the serializable config of the metric.

reset_state()#

Reset all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

stateless_reset_state()#
stateless_result(metric_variables)#
stateless_update_state(metric_variables, *args, **kwargs)#
property variables#