mmd_hypothesis_test#

bayesflow.diagnostics.mmd_hypothesis_test(mmd_null: ndarray, mmd_observed: float = None, alpha_level: float = 0.05, null_color: str | tuple = '#132a70', observed_color: str | tuple = 'red', alpha_color: str | tuple = 'orange', truncate_v_lines_at_kde: bool = False, x_min: float = None, x_max: float = None, bw_factor: float = 1.5)[source]#
Parameters:
mmd_nullnp.ndarray

The samples from the MMD sampling distribution under the null hypothesis “the model is well-specified”

mmd_observedfloat

The observed MMD value

alpha_levelfloat, optional, default: 0.05

The rejection probability (type I error)

null_colorstr or tuple, optional, default: (0.16407, 0.020171, 0.577478)

The color of the H0 sampling distribution

observed_colorstr or tuple, optional, default: “red”

The color of the observed MMD

alpha_colorstr or tuple, optional, default: “orange”

The color of the rejection area

truncate_v_lines_at_kde: bool, optional, default: False

true: cut off the vlines at the kde false: continue kde lines across the plot

x_minfloat, optional, default: None

The lower x-axis limit

x_maxfloat, optional, default: None

The upper x-axis limit

bw_factorfloat, optional, default: 1.5

bandwidth (aka. smoothing parameter) of the kernel density estimate

Returns:
fplt.Figure - the figure instance for optional saving