utils#

A collection of utility functions, mostly used for internal purposes.

Modules

Functions

add_metric(ax[, metric_text, metric_value, ...])

TODO: docstring

add_titles_and_labels(axes[, num_row, ...])

Wrapper function for configuring labels for both axes.

batched_call(f, batch_shape[, args, kwargs, ...])

Map f over the given batch shape with a for loop, preserving randomness unlike the keras built-in map apis.

check_estimates_prior_shapes(estimates, ...)

Checks requirements for the shapes of estimates and prior_samples draws as necessitated by most diagnostic functions.

check_lengths_same(*args)

concatenate_valid(tensors[, axis])

Concatenate multiple tensors along axis, ignoring None values.

convert_args(f, *args, **kwargs)

Convert positional and keyword arguments to just positional arguments for f

convert_kwargs(f, *args, **kwargs)

Convert positional and keyword arguments qto just keyword arguments for f

deserialize_value_or_type(config, name)

Deserialize an object that can be either a value or a type and add it to the supplied dictionary.

detailed_loss_callback()

Provides detailed callback for loss trajectory for every training step.

devices()

Returns a list of available GPU devices.

expand(x, n, side)

expand_as(x, y, side)

expand_left(x, n)

Expand x to the left n times

expand_left_as(x, y)

Expand x to the left, matching the dimension of y

expand_left_to(x, dim)

Expand x to the left, matching dim

expand_right(x, n)

Expand x to the right n times

expand_right_as(x, y)

Expand x to the right, matching the dimension of y

expand_right_to(x, dim)

Expand x to the right, matching dim

expand_tile(x, n, axis)

Expand and tile x along the given axis n times

expand_to(x, dim, side)

filter_kwargs(kwargs, f)

Filter keyword arguments for f

find_batch_size(sample[, memory_budget, ...])

Returns an estimation of an optimal batch size based on memory budget and sample memory footprint.

find_distribution()

find_inference_network(inference_network, ...)

find_memory_budget([device_type])

Returns an estimation of available memory in bytes for the given device type.

find_network()

find_permutation()

find_pooling()

find_recurrent_net()

find_summary_network(summary_network, **kwargs)

format_bytes(b[, precision, si])

Format a number of bytes as a human-readable string in the format '{value} {prefix}{unit}'.

integrate(fn, state, start_time, stop_time)

jacobian(f, x[, return_output])

Compute the Jacobian matrix of f with respect to x.

jacobian_trace(f, x[, max_steps, ...])

Compute or estimate the trace of the Jacobian matrix of f.

jvp(f, x, tangents[, return_output])

Compute the Jacobian-vector product of f at x with tangents.

keras_kwargs(kwargs)

Filter keyword arguments for keras.Layer

make_quadratic(ax, x_data, y_data)

Utility to make a subplots quadratic in order to avoid visual illusions in, e.g., recovery plots.

optimal_transport(x1, x2, *aux[, method])

Matches elements from x2 onto x1, such that the transport cost between them is minimized, according to the method and cost matrix used.

pad(x, value, n, axis[, side])

Pad x with n values along axis on the given side.

parse_bytes(s)

Parse a string in the format '{value} {prefix}{unit}' and return the number of bytes, flooring to the nearest integer.

pickle_load(filepath)

Small utility to safely load a pickle object.

prepare_plot_data(estimates, targets[, ...])

Procedural wrapper that encompasses all preprocessing steps, including shape-checking, parameter name generation, layout configuration, figure initialization, and collapsing of axes.

prettify_subplots(axes, num_subplots[, ...])

TODO: docstring

searchsorted(sorted_sequence, values[, side])

Find indices where elements should be inserted to maintain order.

serialize_value_or_type(config, name, obj)

Serialize an object that can be either a value or a type and add it to a copy of the supplied dictionary.

simultaneous_ecdf_bands(num_estimates[, ...])

Computes the simultaneous ECDF bands through simulation according to the algorithm described in Section 2.2 of

size_of(x)

split_arrays(data[, axis])

Split tensors in the dictionary along the given axis.

split_tensors(data[, axis])

Split tensors in the dictionary along the given axis.

squeeze_inner_estimates_dict(estimates)

If a dictionary has only one key-value pair and the key is "value", return only its value.

stack_valid(tensors[, axis])

Stack multiple tensors along axis, ignoring None values.

tile_axis(x, n, axis)

Tile x along the given axis n times

tree_concatenate(structures[, axis, numpy])

Concatenate all tensors in the given sequence of nested structures.

tree_stack(structures[, axis, numpy])

Like tree_concatenate(), except tensors are stacked instead of concatenated.

vjp(f, x[, return_output])

Compute the vector-Jacobian product of f at x.