GaussianLinearUniform#

class bayesflow.simulators.GaussianLinearUniform(D: int = 10, lower_bound: float = -1.0, upper_bound: float = 1.0, n_obs: int = None, obs_scale: float = 0.1, rng: Generator = None)[source]#

Bases: BenchmarkSimulator

Gaussian Linear Uniform simulated benchmark See: https://arxiv.org/pdf/2101.04653.pdf, Task T.2

NOTE: The paper description uses a variance of 0.1 for likelihood function but the implementation uses scale = 0.1 Our implmenetation uses a default scale of 0.1 for consistency with the implementation.

Parameters:
D: int, optional, default: 10

The dimensionality of the Gaussian prior.

lower_bound: float, optional, default: -1.0

The lower bound of the uniform prior.

upper_bound: float, optional, default: 1.0

The upper bound of the uniform prior.

n_obs: int or None, optional, default: None

The number of observations to draw from the likelihood given the location parameter params. If None, a single draw is produced.

scale: float, optional, default: 0.1

The scale of the Gaussian likelihood.

rng: np.random.Generator or None, optional, default: None

An optional random number generator to use.

prior()[source]#

Generates a random draw from a D-dimensional uniform prior bounded between lower_bound and upper_bound which represents the location vector of a (conjugate) Gaussian likelihood.

Returns:
paramsnp.ndarray of shape (D, )

A single draw from the D-dimensional uniform prior.

__call__(**kwargs) dict[str, ndarray]#

Call self as a function.

observation_model(params: ndarray)[source]#

Generates batched draws from a D-dimenional Gaussian distributions given a batch of location (mean) parameters of D dimensions. Assumes a spherical convariance matrix given by scale * I_D.

Parameters:
paramsnp.ndarray of shape (params, D)

The location parameters of the Gaussian likelihood.

Returns:
xnp.ndarray of shape (params.shape[0], params.shape[1]) if n_obs is None,

else np.ndarray of shape (params.shape[0], n_obs, params.shape[1]) A single draw or a sample from a batch of Gaussians.

rejection_sample(batch_shape: tuple[int, ...], predicate: Callable[[dict[str, ndarray]], ndarray], *, axis: int = 0, sample_size: int = None, **kwargs) dict[str, ndarray]#
sample(batch_shape: tuple[int, ...], **kwargs) dict[str, ndarray]#

Runs simulated benchmark and returns batch_size parameter and observation batches

Parameters:
batch_shape: tuple

Number of parameter-observation batches to simulate.

Returns:
dict[str, np.ndarray]: simulated parameters and observables

with shapes (batch_size, …)