jacobian_trace#
- bayesflow.utils.jacobian_trace(f: Callable[[Tensor], Tensor], x: Tensor, max_steps: int = None, return_output: bool = False, seed: int | SeedGenerator = None)[source]#
Compute or estimate the trace of the Jacobian matrix of f.
- Parameters:
- fcallable
The function to be differentiated.
- xTensor of shape (n, …, d)
The input tensor to f.
- max_stepsint, optional
The maximum number of steps to use for the estimate. If this does not exceed the dimensionality of f(x), use Hutchinson’s algorithm to return an unbiased estimate of the Jacobian trace. Otherwise, perform an exact computation. Default: None
- return_outputbool, optional
Whether to return the output of f(x) along with the trace of the Jacobian. Default: False
- seedint or keras SeedGenerator, optional
The seed to use for hutchinson trace estimation. Only has an effect when max_steps < d.
- Returns:
- 2-tuple of tensors:
The output of f(x) (if return_output is True)
- Tensor of shape (n,)
An unbiased estimate or the exact trace of the Jacobian of f.