jacobian#
- bayesflow.utils.jacobian(f: Callable[[Tensor], Tensor], x: Tensor, return_output: bool = False)[source]#
Compute the Jacobian matrix of f with respect to x.
- Parameters:
- fcallable
The function to be differentiated.
- xTensor of shape (…, D_in)
The input tensor to f.
- return_outputbool, optional
Whether to return the output of f(x) along with the Jacobian matrix. Default: False
- Returns:
- Tensor of shape (…, D_out, D_in)
The Jacobian matrix of f with respect to x.
- 2-tuple of tensors
The output of f(x) (if return_output is True)
- Tensor of shape (…, D_out, D_in)
The Jacobian matrix of f with respect to x.