calibration_error#

bayesflow.diagnostics.calibration_error(estimates: ~typing.Mapping[str, ~numpy.ndarray] | ~numpy.ndarray, targets: ~typing.Mapping[str, ~numpy.ndarray] | ~numpy.ndarray, variable_keys: ~typing.Sequence[str] = None, variable_names: ~typing.Sequence[str] = None, resolution: int = 20, aggregation: ~typing.Callable = <function median>, min_quantile: float = 0.005, max_quantile: float = 0.995) Mapping[str, Any][source]#

Computes an aggregate score for the marginal calibration error over an ensemble of approximate posteriors. The calibration error is given as the aggregate (e.g., median) of the absolute deviation between an alpha-CI and the relative number of inliers from estimates over multiple alphas in (0, 1).

Parameters:
estimatesnp.ndarray of shape (num_datasets, num_draws, num_variables)

The random draws from the approximate posteriors over num_datasets

targetsnp.ndarray of shape (num_datasets, num_variables)

The corresponding ground-truth values sampled from the prior

variable_keysSequence[str], optional (default = None)

Select keys from the dictionaries provided in estimates and targets. By default, select all keys.

variable_namesSequence[str], optional (default = None)

Optional variable names to show in the output.

resolutionint, optional, default: 20

The number of credibility intervals (CIs) to consider

aggregationcallable or None, optional, default: np.median

The function used to aggregate the marginal calibration errors. If None provided, the per-alpha calibration errors will be returned.

min_quantilefloat in (0, 1), optional, default: 0.005

The minimum posterior quantile to consider.

max_quantilefloat in (0, 1), optional, default: 0.995

The maximum posterior quantile to consider.

Returns:
resultdict

Dictionary containing:

  • “values”float or np.ndarray

    The aggregated calibration error per variable

  • “metric_name”str

    The name of the metric (“Calibration Error”).

  • “variable_names”str

    The (inferred) variable names.