Skip to main content
Back to top
Ctrl
+
K
Choose version
Examples
API Reference
About us
Contributing
Developer docs
Search
Ctrl
+
K
Search
Ctrl
+
K
Choose version
Examples
API Reference
About us
Contributing
Developer docs
Section Navigation
adapters
transforms
AsSet
AsTimeSeries
Broadcast
Concatenate
Constrain
ConvertDType
Drop
ElementwiseTransform
ExpandDims
FilterTransform
Keep
Log
MapTransform
NumpyTransform
OneHot
Rename
Sqrt
Standardize
ToArray
Transform
Adapter
approximators
Approximator
ContinuousApproximator
ModelComparisonApproximator
PointApproximator
datasets
DiskDataset
OfflineDataset
OnlineDataset
RoundsDataset
diagnostics
calibration_ecdf
calibration_ecdf_from_quantiles
calibration_error
calibration_histogram
loss
mc_calibration
mc_confusion_matrix
mmd_hypothesis_test
pairs_posterior
pairs_samples
posterior_contraction
recovery
recovery_from_estimates
root_mean_squared_error
z_score_contraction
distributions
DiagonalNormal
DiagonalStudentT
Distribution
experimental
CIF
ContinuousTimeConsistencyModel
FreeFormFlow
links
Ordered
OrderedQuantiles
PositiveSemiDefinite
metrics
functional
maximum_mean_discrepancy
root_mean_squared_error
MaximumMeanDiscrepancy
RootMeanSquaredError
networks
ConsistencyModel
CouplingFlow
DeepSet
FlowMatching
FusionTransformer
InferenceNetwork
MLP
PointInferenceNetwork
SetTransformer
SummaryNetwork
TimeSeriesNetwork
TimeSeriesTransformer
scores
MeanScore
MedianScore
MultivariateNormalScore
NormedDifferenceScore
ParametricDistributionScore
QuantileScore
ScoringRule
simulators
make_simulator
HierarchicalSimulator
LambdaSimulator
LotkaVolterra
ModelComparisonSimulator
SIR
SequentialSimulator
Simulator
TwoMoons
types
utils
keras_utils
inverse_shifted_softplus
inverse_softplus
shifted_softplus
logging
critical
debug
error
exception
info
log
warn_once
warning
numpy_utils
inverse_shifted_softplus
inverse_sigmoid
inverse_softplus
one_hot
shifted_softplus
softplus
add_metric
add_titles_and_labels
batched_call
check_estimates_prior_shapes
check_lengths_same
concatenate_valid
convert_args
convert_kwargs
deserialize_value_or_type
detailed_loss_callback
devices
expand
expand_as
expand_left
expand_left_as
expand_left_to
expand_right
expand_right_as
expand_right_to
expand_tile
expand_to
filter_kwargs
find_batch_size
find_distribution
find_inference_network
find_memory_budget
find_network
find_permutation
find_pooling
find_recurrent_net
find_summary_network
format_bytes
integrate
jacobian
jacobian_trace
jvp
keras_kwargs
make_quadratic
optimal_transport
pad
parse_bytes
pickle_load
prepare_plot_data
prettify_subplots
searchsorted
serialize_value_or_type
simultaneous_ecdf_bands
size_of
split_arrays
split_tensors
squeeze_inner_estimates_dict
stack_valid
tile_axis
tree_concatenate
tree_stack
vjp
workflows
BasicWorkflow
API Reference
utils
devices
devices
#
bayesflow.utils.
devices
(
)
→
list
[source]
#
Returns a list of available GPU devices.
On this page
devices()
Edit on GitHub