TwoMoons#
- class bayesflow.simulators.TwoMoons(lower_bound: float = -1.0, upper_bound: float = 1.0, rng: Generator = None)[source]#
Bases:
BenchmarkSimulator
Two moons simulated benchmark. See: https://arxiv.org/pdf/2101.04653.pdf, Task T.8
- Parameters:
- lower_bound: float, optional, default: -1.0
The lower bound of the uniform prior
- upper_bound: float, optional, default: 1.0
The upper bound of the uniform prior
- rng: np.random.Generator or None, optional, default: None
An option random number generator to use
- prior()[source]#
Generates a random draw from a 2-dimensional uniform prior bounded between lower_bound and upper_bound which represents the two parameters of the two moons simulator.
- Returns:
- params: np.ndarray of shape (2, )
A single draw from the 2-dimensional uniform prior.
- observation_model(params: ndarray)[source]#
Implements data generation from the two-moons model with a bimodal posterior.
- Parameters:
- params: np.ndarray of shape (2, )
The vector of two model parameters.
- Returns:
- observables: np.ndarray of shape (2, )
The 2D vector generated from the two moons simulator.
- rejection_sample(batch_shape: tuple[int, ...], predicate: Callable[[dict[str, ndarray]], ndarray], *, axis: int = 0, sample_size: int = None, **kwargs) dict[str, ndarray] #
- sample(batch_shape: tuple[int, ...], **kwargs) dict[str, ndarray] #
Runs simulated benchmark and returns batch_size parameter and observation batches
- Parameters:
- batch_shape: tuple
Number of parameter-observation batches to simulate.
- Returns:
- dict[str, np.ndarray]: simulated parameters and observables
with shapes (batch_size, …)