Source code for bayesflow.simulators.benchmark_simulators.two_moons
import numpy as np
from .benchmark_simulator import BenchmarkSimulator
[docs]
class TwoMoons(BenchmarkSimulator):
def __init__(self, lower_bound: float = -1.0, upper_bound: float = 1.0, rng: np.random.Generator = None):
"""Two moons simulated benchmark.
See: https://arxiv.org/pdf/2101.04653.pdf, Task T.8
Parameters
----------
lower_bound: float, optional, default: -1.0
The lower bound of the uniform prior
upper_bound: float, optional, default: 1.0
The upper bound of the uniform prior
rng: np.random.Generator or None, optional, default: None
An option random number generator to use
"""
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.rng = rng
if self.rng is None:
self.rng = np.random.default_rng()
[docs]
def prior(self):
"""Generates a random draw from a 2-dimensional uniform prior bounded between
`lower_bound` and `upper_bound` which represents the two parameters of the two moons simulator.
Returns
-------
params: np.ndarray of shape (2, )
A single draw from the 2-dimensional uniform prior.
"""
return self.rng.uniform(low=self.lower_bound, high=self.upper_bound, size=2)
[docs]
def observation_model(self, params: np.ndarray):
"""Implements data generation from the two-moons model with a bimodal posterior.
Parameters
----------
params: np.ndarray of shape (2, )
The vector of two model parameters.
Returns
-------
observables: np.ndarray of shape (2, )
The 2D vector generated from the two moons simulator.
"""
# Generate noise
alpha = self.rng.uniform(low=-0.5 * np.pi, high=0.5 * np.pi)
r = self.rng.normal(loc=0.1, scale=0.01)
# Forward process
rhs1 = np.array([r * np.cos(alpha) + 0.25, r * np.sin(alpha)])
rhs2 = np.array([-np.abs(params[0] + params[1]) / np.sqrt(2.0), (-params[0] + params[1]) / np.sqrt(2.0)])
return rhs1 + rhs2