Source code for bayesflow.simulators.benchmark_simulators.two_moons

import numpy as np

from .benchmark_simulator import BenchmarkSimulator


[docs] class TwoMoons(BenchmarkSimulator): def __init__(self, lower_bound: float = -1.0, upper_bound: float = 1.0, rng: np.random.Generator = None): """Two moons simulated benchmark. See: https://arxiv.org/pdf/2101.04653.pdf, Task T.8 Parameters ---------- lower_bound: float, optional, default: -1.0 The lower bound of the uniform prior upper_bound: float, optional, default: 1.0 The upper bound of the uniform prior rng: np.random.Generator or None, optional, default: None An option random number generator to use """ self.lower_bound = lower_bound self.upper_bound = upper_bound self.rng = rng if self.rng is None: self.rng = np.random.default_rng()
[docs] def prior(self): """Generates a random draw from a 2-dimensional uniform prior bounded between `lower_bound` and `upper_bound` which represents the two parameters of the two moons simulator. Returns ------- params: np.ndarray of shape (2, ) A single draw from the 2-dimensional uniform prior. """ return self.rng.uniform(low=self.lower_bound, high=self.upper_bound, size=2)
[docs] def observation_model(self, params: np.ndarray): """Implements data generation from the two-moons model with a bimodal posterior. Parameters ---------- params: np.ndarray of shape (2, ) The vector of two model parameters. Returns ------- observables: np.ndarray of shape (2, ) The 2D vector generated from the two moons simulator. """ # Generate noise alpha = self.rng.uniform(low=-0.5 * np.pi, high=0.5 * np.pi) r = self.rng.normal(loc=0.1, scale=0.01) # Forward process rhs1 = np.array([r * np.cos(alpha) + 0.25, r * np.sin(alpha)]) rhs2 = np.array([-np.abs(params[0] + params[1]) / np.sqrt(2.0), (-params[0] + params[1]) / np.sqrt(2.0)]) return rhs1 + rhs2